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Abstract

We apply the method of Bozzolo, Ferrante and Smith for the calculation of alloy energies

for bcc elements. The heat of formation of several alloys is computed with the help of

the Connolly-Williams method within the tetrahedron approximation. The dependence

of the results on the choice of different sets of ordered structures is discussed.



Introduction

Recently, a new semiempirical method for calculating defect energetics in metallic alloys

was introduced by Bozzolo, Ferrante and Smith (BFS) 1. This technique, which builds on

the ideas of Equivalent Crystal Theory (ECT) 2 was successfully applied to the study of heat

of formation and lattice parameters of fcc alloys as a function of alloy composition. BFS is a

quantitatively accurate and computationally simple technique for determining the energetics

of ordered multicomponent structures. Although there has been extensive calculations for

fcc alloys, similar results for bcc alloys have been limited. This is in part due to possible

limitations in application of such approaches to bcc metals. Since alloys of bcc metals are

important in structural materials, the present work represents an important contribution

to the calculation of defect energies in alloys. In this effort, we apply BFS to the study of

bcc-based binary alloys using the method of Connolly and Williams (CWM) 3 for the study

of the energetics of disordered structures within the tetrahedron approximation.

In Section 2 we present the BFS method and discuss the application of CWM to several

choices of ordered structures. An application to selected bcc-based binary alloys is discussed

in Section 3. Conclusions are drawn in Section 4.



Formalism

In BFS, the energetics of binary alloys is described in terms of pure metal properties and

only two experimentally (or theoretically) determined alloys properties. We build on the

formulation of ECT by dividing the total energy of the alloy into a chemical energy and a

strain or structural energy. The strain energy associated with a given atom is computed

as if all of its neighbors were of the same atomic species. It arises from neighbor locations

being different from in the elemental single-crystal environment. The remainder of the total

energy is defined to be the chemical energy, which is due to some of an atom's neighbors

being of a different atomic species. We now proceed to outline the procedure for calculation

of heats of formation versus concentration for alloys with multiple atomic species. With

this procedure, the binding energy curve as a function of volume is obtained from which

the bulk properties of specified alloys can be extracted. The application of this technique

to different crystallographic structures is straightforward. In this work, we concentrate on

bcc-based binary alloys.

Consider a cell containing Nx atoms of atomic species X, (X = A, B, ...), so that the

total number of atoms in this cell is given by N = _-,x Nx. The heat of formation of this

cell is

AE_u = E_u - _ NxEx (1)
X

where Eceu is the total energy of the cell and Ex is the cohesive energy of an atom of species

X in a pure crystal of its own species. If E'(i, X) denotes the energy of the i-th atom in

the cell (i = 1, ..., Nx) of species X then

Nx

AEceu = _ _ ei,x.
X i=1

(2)



where the energy difference e_,x = E'(i, X) - Ex, has a strain and a chemical energy contri-

bution, linked by a coupling factor g_,x that ensures that the chemical energy contribution

vanishes for large interatomic distances:

ei,x = e S C_,x + g_,xe_,x (3)

In order to compute the strain energy, es we just 'flip' every atom surrounding atomi,X ,

(i, X) into an atom of the same species X, and perform a regular ECT calculation 2. The

equivalent lattice parameter a_,X is determined by solving the appropriate ECT equation

applied to atom (i, X) in the defect (but pure) crystal. Then,

eS,,x = E x [1 - (1 + aS_.)e -_s;¢] , aS*,,x= (aSx -aX)/lx • (4)

where a: denotes the lattice constant of a pure X crystal and E x the corresponding cohesive

energy.

In Eq. (3), the strain and chemical energies are coupled nonlinearly. The coupling func-

tion gi,x guarantees that the chemical contribution will vanish with increase in interatomic

spacings, as it should. We define the coupling function in terms of the scaled equivalent

lattice parameter of the strained crystal as follows

g ,x = e (5)

For the chemical energy contribution e_x , we keep the actual chemical composition

of the cell (i.e., A, B, C in proper proportions for the alloy) , but we force the atoms

surrounding atom (i, X) to be located in the lattice sites of a pure crystal of species X.

Thus, we are including the effect of changing a neighbor to an A, B or C atom). Two similar



ECT calculations are then performed:

= -  fx(o). (6)

For the first term, e_,x({Ay, x)}, the chemical perturbation is included in the appropriate

values of the set of parameters {Ay, x } which include the effects of changing the atomic

species of a neighbor, where Y denotes the atomic species of a given neighbor of atom

(i,X). In order to determine the parameters Ay, x and Ax,y for a given pair of atomic

species (X,Y), two experimental values of any property of the X::YI-x alloy are needed.

We choose to use the experimental heats of solution in the dilute limit which in most cases

are readily available.

The equivalent lattice parameter a c is obtained by solving the corresponding ECTi,X

equation 2

12R_Xe -axR1 + 6R_Xe-(C'X+_x )R_ = _Nxyr_Xe-(_x+avx) _,
Y

+ ___Mxyrg xe-("x+'_x+hvx) "2
Y

(7)

where Ri and R2 are the nearest-neighbor and next-nearest-neighbor distances in the equiv-

alent crystal of lattice parameter aCi,x. The first term in the chemical energy, e_x(Ay, z) is

then given by

aC* _e-"C;] ac_ = (aT,x a )ltxeCi,x(Ay, x)=Ti,xEX[1-( 1+ i,x, ' i' i,X - (s)

with 7i,x = 1 if a c_i,x > 0 and 7i,x = -1 otherwise. The second term in Eq(8) is obtained

by a similar procedure, but setting all the perturbative parameters {Ay, x } equal to zero.

This is done in order to free the chemical energy from any structural defect information,



retainingonly the contributionof tile chemicalcompositionof the surroundings of atom

(i,x).

In this work, we are concerned with calculating the heats of formation of the bcc-based

ordered binary alloys A_BI__. If no relaxation of the individual atomic sites is allowed,

aS*= (r- ax)/ x.

then the strain energy is simply

es E x [1 (1 + aS*)] __s,= -- e X , (9)

where r is the actual interatomic distance of the alloy. Within this approximation, the

second term in the chemical energy (Eq.(6)) vanishes, leaving us only with the computation

of the first term, e_c(A ). For a given ordered structure m, the ECT equation for the

equivalent lattice parameter a_ (Eq.(S))is

12R_Xe -_'xnl + 6R_Xe-(_'x+_x )R2 =

+

+

Nxxr_Xe -c'xrl + Nxyr_Xe -(c'x+'xYx)r'

Mxxr_X e-('_x+_x )"2

MxyrPX e-(°'X+_x +aVx)r2 (10)

with R1 : _23R2;R2 = a_;r, = 2_3-r2; r2 = aft. The parameters px,ax and Ax are listed

in Ref. 2 and the coefficients Nxx, Nxy, Mxx and Mxy depend on the different ordered

structures considered.

As in previous applications, we will use the heats of solution in the dilute limit as the

experimental input for determining the parameters AAB and ABA. In order to compute the

heats of formation of the disordered alloys, we use the Connolly-Williams method 3. This

method is based on a formal expression for the total energy first derived by Sanchez 4, where

the total energy of a particular configuration m of a binary alloy consisting of atoms A and



B on a lattice of fixed symmetry is given by

AEm(r) = _ v_(r)_'_ (11)

where v_(r) are many-body potentials, the _n are multisite correlation functions defined on

a "/-type cluster, r is the lattice parameter and the sum includes all 7-type clusters on the

lattice. The multisite correlation functions are defined as

1 (12)

where a,_ is a spinlike variable which takes the values ÷1 and -1 depending on whether

the lattice point n is occupied by an A or B atom , and N.y is the total number of 7-type

clusters.

The many-body potentials v_(r) are obtained by inversion of Eq. (11), which implies

the existence of a maximum cluster 7,_a_ beyond which the v_(r) are supposed to be neg-

ligible. Thus, for a certain set of ordered structures a and by arbitrarily truncating the

summation in Eq. (12), the many-body potentials are

_,(_) -- _ _7 AE_(_), ¢ _<_ _<_o_

v_(r) = 0 , _._<_<_ (13)

where ¢ represents the empty cluster. Recently 5, the CWM was extended to include more

ordered structures and cluster sizes than the ones originally proposed 3 . Multisite correla-

tions for the most common bcc and fcc based superstructures were also given s. Table 1 lists

the correlations included in the tetrahedron truncation of the CWM for some structures

on the bcc lattice. Table 2 shows the coefficients Nxx, Nxy, Mxx and Mxy needed to

solve Eq. (10) for all the possible ordered structures included in Table 1. These ordered



structuresarederivedfrom the tetrahedronclustershownin Fig. 1: a and 7 are on body

centers and/3 and _f are on cube edges. When a = 7 and _ = (5 the structure is called B2.

The B32 structure is derived when a = _ _ fl = 7 and the DO3 structure is obtained when

In this work, we considered different choices of ordered structures, as well as the type of

clusters included in Eq. (12). Being that the experimental input is, obviously, the same for

all cases studied, a comparison with available experimental data for the heats of formation

of binary alloys 6 should give us an indication of the preferred ordered structures for a given

binary alloy.

The different choices are related to the two possible ordered structures at 50 % compo-

sition ( B2 and B32) and the corresponding pair multisite correlation functions (_2 and _3).

We will denote the cases studied as follows: (i) B32/_:: includes the B32 ordered structure

and the _2 correlation function (nearest-neighbor pair), leaving out the B2 structure as well

as the _3 function (next-nearest-neighbor pair); (ii) B32/_3: includes the ordered structure

B32 and the _3 function, leaving out B2 and _2; (iii) B2/_2: includes B2 and _¢2, leaving

out B32 and _3 and (iv) B2q-B32/_2 q- _3: includes all the structures and functions listed in

Table 1. In each case, the excess energy AEm(r) for the corresponding ordered structures

is obtained with Eq. (2). Within the tetrahedron approximation, this calculation involves

just a few atoms, as indicated in Table 2.

Following CWM, the excess energy for the disordered alloys A_BI_:_ is given by

AED(r,x) = _-_(1- 2x)n_v_(r)

where n._ is the number of sites contained in the 7 cluster.

(14)

For each choice of ordered

8



structuresand multisitecorrelation fuctions we have different many-body potentials

m

Replacing Eq. (15) in Eq. (14), we can write AED(r, x) for each one of the cases studied

as

AED(r,x) = _ cm(x)AEm(r) (16)
m

where the sum runs over the appropriate ordered structures included in each case considered

and the polynomials cm(x) are also dependent on the clusters and structures included in

each case. Table 3 lists the polynomials cm(x) for the reduced basis sets (i), (ii) and (iii)

and Table 4 displays the corresponding polynomials for the general case (all structures and

multisite correlation functions included in Table 1). Finally, the heat of formation for a

given concentration x is obtained by finding the minimum value of AED(r, x).

9



Results and Discussion

In this section we present results for selected bcc-based alloys which display quite different

behavior. For the four systems studied, we used the experimental values of the heats of

solution in the dilute limit 6, listed in Table 5. Table 6 displays the values of p, a, I and Ec

for the pure elements 2, needed to solve Eqs. (4)-(10). Table 7 shows the values of AAB and

ABA one obtains with our procedure for the different choices of basis sets described in the

previous section.

The parameters AAB and ABA can be taken as 'perturbations' to the pure-element

a's listed in Table 6, trying to simulate the interaction between two atoms of different

species. In all cases, these quantities are small compared to the pure-element a's, and,

surprisingly, rather insensitive to the different choices of basis sets. However, these small

differences translate into a noticeable change in the heat of formation versus concentration

curves obtained for each choice of basis set, as can be seen in Fig. 2.

Fig. 2.a shows the results obtained for Cr-Fe alloys where the regular, symmetric

behavior of the heat of formation curve is accurately reproduced by using the basis set (iii),

where a B2 structure is included. Although there is no known ordered phase of Cr-Fe with

the B2 structure, the fact that the choice (iii) is favored over the others can be taken as

an indication of the possible existence of such phases. This assumption is further validated

by similar results for Fe-V alloys (Fig. 2.b) where, again, basis set (iii) best approximates

the available experimental values of the heat of formation 6. In this case, there is some

experimental evidence that such an ordered phase exists 6'7.

The predictions for Cr-Mo alloys show a drastic change in behavior as compared to

Cr-Fe, although both systems display similar features in the experimental values of the heat

10



of formation.Fig. 2.cshowsthe theoreticalresults.In this case, the basis sets (i) and (ii)

yield comparable results, predicting a preference for a B32 structure, although there are no

known ordered phases of these alloys.

Of the four examples shown in this work, Cr-V (Fig. 2.d) displays the most surprising

features, therefore providing a severe test to the sensitivity and accuracy of our method. In

the large body of experimental data for binary alloys, Cr-V is one of the very few to display

the irregularities seen in the heat of formation vs. concentration curve, characterized by a

sudden change in curvature for a small range of concentrations. As it was the case for Cr-

Mo, this feature of Cr-V is approximately reproduced only by the results generated with the

choice of the basis set (ii). Once again, no ordered phase is known, but the clear distinction

between the different basis set choices shown in Fig. 2.d can be taken as an indication of

the crystallographic structure of these alloys.

The fact that we used the experimental heats of solution in the dilute limit (i.e., the

derivative of the heat of formation at x = 0 and x = 1) might lead one to believe that that

choice somehow predetermines the behavior of the heat of formation curves. The examples

shown in this work obviously contradict this fact: all four curves (for each choice of basis

set) were obtained with the same values of the heats of solution. However, their behavior

for the whole range of concentration is quite different in each case.

The explanation for the particular features of the heat of formation vs. concentration

curves is not then in the heats of solution, which is our only experimental input, but in

the delicate balance between the strain and chemical energies, as defined in our formalism.

Except for the case of Cr-Fe, where the small lattice mismatch results in an almost negligible

strain energy, in all the other cases the heat of formation predicted with our method is

11



obtained from large competing strain and chemical energy contributions.

Fig. 3 displays these contributions for the four systems considered in Fig. 2, showing

the results obtained with the best basis set choice for each system, as discussed before. The

apparent similarity seen in Cr-Fe and Cr-Mo for their heats of formation, arises from quite

different strain and chemical energy contributions: while the positive chemical energy is

mainly responsible for the heat of formation for Cr-Fe alloys (Fig. 3.a), a large negative

chemical energy in Cr-Mo (Fig. 3.c) is necessary to balance a large strain energy contribu-

tion, absent in Cr-Fe. Also, the symmetry seen in the heat of formation curve for Cr-Mo

is a result of completely different regimes in the strain and chemical energies: linear for

Mo-rich systems and with a pronounced curvature for Cr-rich alloys. Fig. 3.b shows, for

Fe-V, how the chemical energy is solely responsible for the axis-crossing seen in the heat of

formation curve.

As noted before, Cr-V provides the appropriate grounds for testing the sensitivity

of this method. Fig. 3.d displays the strain and chemical energy contributions for the

Cr-V systems. One can see how a barely noticeable flattening in the chemical energy

contribution is the source of the unusual feature seen in the heat of formation curve. These

results correspond to the basis set (ii), which best approximates the experimental results.

Finally, Fig. 4 expands on the results shown in Fig. 3.d in that the strain and chemical

energy contributions are displayed for all four basis sets. The strain energy contribution

(independent of Ac,.v and Aver) shows small differences due to the choice of different

ordered structures. The chemical energy term dictates the behavior of the heat of formation

as a function of concentration: the asymmetry seen in Fig. 3.d arises from the chemical

behavior of the B32 structure.

12



Conclusions

In this work, we applied the semiempirical method of Bozzolo, Ferrante and Smith to the

study of bcc-based alloys. The method was used to compute the total energy of ordered

structures. The energetics of disordered alloys was studied with the CWM and several

choices of basis sets were considered. Good agreement with experimental results for certain

choices of basis sets gives an indication of the possible symmetries underlying the ordered

compounds. The partition of the heat of formation into strain and chemical contributions

provides some insight in the physical behavior of the systems studied.

13
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TABLE 1.- CORRELATIONSINCLUDED IN THE TETRA-

HEDRON TRUNCATION OFTHE CWM FOR SOME

STRUCTURESON THE BCCLATI]CE

[The _i with increasingindex i, correspond
to the empty cluster, the point, the nearest-

neighbor (NN) pair, the next-nearest-neighbor

(NNN) pair, the triangle formed by two NN

pairs and one NNN pair, and the tetrahedron

formed by four NN pairs and two NNN pairs.]

Structure Composition
bcc

DO3

B2

B32

DO3

bcc

A

A3B
AB

AB

AB3
B

1 1 1 1 1 1
1 1

1 7 0 0 -t -1
1 0 -1 1 0 1

1 0 0 -1 0 1

1 -½ 0 0 ½-1
1 -1 1 1 -1 1

TABLE

Struc./Comp.

bcc/B

DO3/AB3

B2/AB

B32/AB

DO3/A3B

bcc/A

2. - COEFFICIENTS Nxx, Nxy, Mxx, and Mxy

Atom NAA NAB NBB NBA MAA MAB MBB

B(4)

A(1)

B(2)

B(1)

A(2)

B(2)

A(2)

B(2)

A(2)

A(1)

B(1)

A(4)

0

0

0

0

0

0

4

0

4

8

0

8

8

0

4

8

0

0

0

4

0

0

0

0

MBA

0 0 0 6 0

0 0 6 0 0

4 0 0 6 0

0 0 0 0 6

0 6 0 0 0

8 0 0 6 0

0 0 6 0 0

4 0 0 0 6

0 6 0 0 0

0 0 6 0 0

8 0 0 0 6

0 6 0 0 0

TABLE 3. - POLYNOMIALS Cm(X ) FOE CASES (i), (ii), AND (iii)

Struct. Comp.
bcc B

DO3 AB3

B2 AB

B32 AB

DO3 A3B

bcc A

m (i)
0 1 - 4x + 5x 2 -- 2x 3

1 4x - 12x 2 + 12x 3 - 4x 4

2

2 8x 2 - 16x 3 + 8x 4
3 4X 3 -- 4x 4

4 -x 2 + 2x 3

(ii)
1 - 4x + 7x 2 - 6X 3 + 2x4[

4x - 12x 2 + 12x 3 - 4x 4

4x 2 _ 8x 3 + 4x 4

4x 3 _ 4x 4

x 2 _ 2x 3 + 2x 4

(iii)
1 - 4x + 7z 2 - 6x 3 + 2x 4

4x- 12x 2 + 12z 3- 4z 4

4x 2 _ 8z 3 + 4x 4

4x 3 _ 4x 4

x 2 _ 2x 3 + 2z 4
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TABLE 4. - POLYNOMIALS

Structure

bcc B

DO3 AB3

B2 AB

B32 AB

DOa A3B
bcc A

Composition ] m

cm(x ) FOR CASE (iv)

(iv)
1 - 4x + 6x 2 - 4x 3 + x 4

4x - 12x 2 + 12x 3 - 4x 4

4z 2 _ 8x 3 + 4x 4

2x 2 -- 4x 3 + 2x 4

4x 3 _ 4x 4

X 4

TABLE 5. - EXPERIMENTAL

HEATS OF SOLUTION

EAB AND EBA

A B EAB EBA

Cr Fe 0.218 0.218

Fe V -0.102 0.807

Cr V -0.088 -0.189

Cr Mo 0.215 0.323

TABLE 6.

Element

Cr

Fe

V

Mo

INPUT PARAMETERS FOR BCC ELEMENTS

p l a A Cohesive Lattice

6 0.254 2.889 0.714

6 0.277 3.124 0.770

6 0.305 2.726 0.857

8 0.262 3.420 0.736

Energy Constant

4.10 2.88

4.29 2.86

5.31 3.03

6.82 3.15

TABLE 7. - PARAMETERS

A B

Cr Fe

Fe V

Cr V

Cr Mo

AAB AND ABA

Basis set AAB

(i)
(ii)

(iii)

(iv)
(i)
(ii)
(iii)
(iv)
(i)
(ii)
(iii)
(i_)
(i)
(ii)
(iii)
(iv)

0.0445

0.0443

0.0447

0.0448

0.0751

0.0757

0.0768

0.0775

-0.0228

-0.0230

-0.0222

-0.0217

-0.0246

-0.0248

-0.0238

-0.0230

ABA

0.0277

0.0279

0.0275

0.0274

-0.0644

-0.0647

-0.06515

-0.0649

-0.0215

-0.02115

-0.0226

-0.0221

-0.0060

0.0060

-0.0143

-0.0075

17



Figure1.--Tetrahedron cluster ina bcc lattice (seetext).
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Figure 2.--Heat of formation versus concentration for different bcc-based alloys. In all cases, the solid squares indicate
expedmantal values, and the different curves the results obtained using the basis sets and correlation functions
described in the text: (i) B32//_2 0ong-deshed line), (i_ B32//_3 (short-dashed line), (iii) B2/_2 (solid line) and 0v) B32+B2/_ 3
(dotted line).
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in Fig. 2.d.
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